1 Grassmann manifold and Universal Bundle

1.1 Grassmann Manifold

1.1.1 Motivation

For each surface M in \mathbb{R}^3, the Gauss map ν is a map from M into S^2 by sending each point to its unit normal vector. If the surface is orientable, then the Gauss map induce a map from the surface into the complex projective space \mathbb{P}^1. More generally, suppose that M is an n-dimensional smooth submanifold of \mathbb{R}^{n+k}. For each $x \in M$, the tangent space T_xM can be identified with an n-dimensional subspace of \mathbb{R}^{n+k}. We may treat T_xM as an element in so-called the Grassmannian manifold. The Grassmannian $G_n(\mathbb{R}^{n+k})$ is the set of all n-dimensional vector subspaces of \mathbb{R}^{n+k}. It is obvious that all of the tangent space of M are points in the Grassmannian.

1.1.2 Stiefel Manifold and Grassmann Manifold and Their Topology

A n-frame in \mathbb{R}^{n+k} is a point $v = (v_1, \cdots, v_n) \in (\mathbb{R}^{n+k})^n$ so that the set $\{v_1, \cdots, v_n\}$ is a set of linearly independent vectors in \mathbb{R}^{n+k}. The collection of all n-frames in \mathbb{R}^{n+k}, $V_n(\mathbb{R}^{n+k})$, forms an open subset of $(\mathbb{R}^{n+k})^n$ and is called the Stiefel manifold. There is a canonical map q from the Stiefel manifold into the Grassmannian given by

$$q(v_1, \cdots, v_n) = \text{span}\{v_1, \cdots, v_n\}.$$

One can topologized $G_n(\mathbb{R}^{n+k})$ in the following way: we say that O is open in $G_n(\mathbb{R}^{n+k})$ if and only if $q^{-1}(O)$ is open in $V_n(\mathbb{R}^{n+k})$. An orthonormal k-frame is a point $v = (v_1, \cdots, v_n)$ in $V_n(\mathbb{R}^{n+k})$ so that $v_i \cdot v_j = \delta_{ij}$ for any i, j. We shall denote the set of all orthonormal k-frame by $V_n^0(\mathbb{R}^{n+k})$ and the restriction of q to $V_n^0(\mathbb{R}^{n+k})$ by q_0. It is clear that $V_n^0(\mathbb{R}^{n+k})$ is a compact subset of $(\mathbb{R}^{n+k})^n$ since it is closed and bounded. One can also topologize $G_n(\mathbb{R}^{n+k})$ in the following way: O is open in $G_n(\mathbb{R}^{n+k})$ if and only if $q_0(O)$ is open in $V_n^0(\mathbb{R}^{n+k})$. We can show that these two topologies given by q, q_0 are the same. For each $v \in V_n(\mathbb{R}^{n+k})$, we can construct a point $G(v) \in V_n^0(\mathbb{R}^{n+k})$ via the Gram-Schmidt process. This construction $G: V_n(\mathbb{R}^{n+k}) \to V_n^0(\mathbb{R}^{n+k})$ is obviously continuous. Suppose T and T_0 are the two topologies on $G_n(\mathbb{R}^{n+k})$ given by q, q_0 respectively. Suppose O is T_0-open, then $q_0^{-1}(O)$ is open in $V_n^0(\mathbb{R}^{n+k})$ and thus $q^{-1}(O) = G^{-1}(q_0^{-1}(O))$ is open in $V_n(\mathbb{R}^{n+k})$. Therefore O is T open. Now let us consider the inclusion map $i: V_n^0(\mathbb{R}^{n+k}) \to V_n(\mathbb{R}^{n+k})$. We know due to the relative topology of $V_n^0(\mathbb{R}^{n+k})$, the inclusion map is continuous. Hence for each T-open set O in $G_n(\mathbb{R}^{n+k})$, $q_0^{-1}(O) = i^{-1}(q^{-1}(O))$ is open in $V_n^0(\mathbb{R}^{n+k})$. As a consequence, O is T_0-open. From these observation, we find that $G_n(\mathbb{R}^{n+k})$ is a compact space since it is the image of a compact space under the continuous map q_0.

For each $w \in \mathbb{R}^{n+k}$ and $X \in G_n(\mathbb{R}^{n+k})$, define

$$\rho_w(X) = d(w, X)^2.$$

Consider the map $V_n^0(\mathbb{R}^{n+k})$ given by

$$f(v_1, \cdots, v_n) = w \cdot w - \sum_{k=1}^{n}(w \cdot v_k)^2.$$

Then it is obvious that f is continuous and $f = \rho_w \circ q_0$. We find that for any O open in \mathbb{R}, $q_0^{-1}(\rho_w^{-1}(O)) = f^{-1}(O)$ is open, i.e. $\rho_w^{-1}(O)$ is open in $G_n(\mathbb{R}^{n+k})$. Hence the map $\rho_w: G_n(\mathbb{R}^{n+k}) \to \mathbb{R}$ is continuous. Suppose $X \neq Y$ are two points in $G_n(\mathbb{R}^{n+k})$. Choose $w \in X$ but $w \notin Y$. Then $\rho_w(X) = 0 \neq \rho_w(Y)$. Hence ρ_w is a continuous function separating X and Y. This tells us that $G_n(\mathbb{R}^{n+k})$ is a Hausdorff space.

1.1.3 Grassmann Manifold as a Topological Manifold

Let X_0 be any point in $G_n(\mathbb{R}^{n+k})$. We know $\mathbb{R}^{n+k} = X_0 \oplus X_0^\perp$. Let $P_0: \mathbb{R}^{n+k} \to X_0$ be the orthogonal projection onto X_0. For each $X \in G_n(\mathbb{R}^{n+k})$, we might consider $P_0^X: X \to X_0$ the restriction of P_0 to X. Let U be the set of all points Y in $G_n(\mathbb{R}^{n+k})$ so that $Y \cap X_0^\perp = \{0\}$. Then one can show that U is an open set in $G_n(\mathbb{R}^{n+k})$ and for each $X \in U$, $P_0^X: X \to X_0$ is an isomorphism. Hence for each $x \in X_0$, $(P_0^X)^{-1}x \in X$. Define a map $K^X: X_0 \to \mathbb{R}^{n+k}$ by $K^X x = (P_0^X)^{-1}x - x$. If we denote $x' = K^X x$, then $P_0^X(x + x') = x$ would imply that $x' \in X_0^\perp$. Hence $K^X: X_0 \to X_0^\perp$. Conversely for each $K \in L(X_0, X_0^\perp)$,
define \(X = \{ x + Kx : x \in X_0 \} \). Then we find that \(P^X : X \to X_0 \) by \(P^X(x + Kx) = x \) defines an isomorphism and therefore \(X \cap X_0^\perp = \{ 0 \} \), i.e. \(X \subseteq U \). Moreover, we also have \(K = K^X \). This establish an one-to-one correspondence between \(U \) and \(L(X_0, X_0^\perp) \) defined by \(X \to K^X \). Since we can identify the space \(L(X_0, X_0^\perp) \) with \(\mathbb{R}^{nk} \) by choosing a suitable basis for \(X_0 \) and \(X_0^\perp \). Let us fix an orthonormal basis \(\{ x_1, \ldots, x_n \} \) for \(X_0 \).

Then for any \(Y \) in \(U \), there exists a unique basis \(\{ x_1^Y, \ldots, x_n^Y \} \) so that

\[
p^Y(x_i^Y) = x_i, \quad 1 \leq i \leq n.
\]

From here, we also know that for any \(1 \leq i \leq n \),

\[
x_i^Y = x_i + K^Y x_i.
\]

Define a map \(F : U \to V_n(\mathbb{R}^{n+k}) \) by \(Y \mapsto (x_1^Y, \ldots, x_n^Y) \). Then this map is continuous. Hence \(\{ x_i^Y \} \) depends continuously on \(Y \) and so is \(K^Y \) or one can This implies that the one-to-one correspondence between \(U \) and \(L(X_0, X_0^\perp) \) is in fact a homeomorphism. This shows that \(G_n(\mathbb{R}^{n+k}) \) is a compact Hausdorff topological manifold of dimension \(nk \). Next, we want to show that the map \(G_n(\mathbb{R}^{n+k}) \to G_k(\mathbb{R}^{n+k}) \) given by \(X \mapsto X^\perp \) is homeomorphism. Since we have already showen that the Grassmannian is a topological manifold, to show \(\downarrow : X \to X^\perp \) is continuous, we only need to show that in each neighborhood \(U \) defined above, \(\downarrow \) is a continuous function.

Let us fixed a basis \(\{ \pi_1, \ldots, \pi_k \} \) in \(X_0^\perp \). Define a function \(h : q^{-1}(U) \to V_n(\mathbb{R}^{n+k}) \) as follows. For each \((y_1, \ldots, y_n) \in q^{-1}(U) \), define \(h(y_1, \ldots, y_n) = G(y_1, \ldots, y_n, \pi_1, \ldots, \pi_n) \). Here \(G \) is the Gram-Schmidt operator on \(V_n(\mathbb{R}^{n+k}) \). It is obvious that \(h \) is a continuous function. If we denote \(h(y_1, \ldots, y_n) = (y_1', \ldots, y_n', y_{n+1}', \ldots, y_{n+k}') \), then \(\{ y_i' : 1 \leq i \leq n \} \) and \(\{ y_{n+i}' : 1 \leq i \leq k \} \) form basis for \(Y \) and \(Y^\perp \) respectively. Define \(h' : q^{-1}(U) \to V_k(\mathbb{R}^{n+k}) \) by \(h'(y_1', \ldots, y_n') = (y_{n+1}', \ldots, y_{n+k}') \). Then \(h' \) is a continuous map (it is the composition of \(h \) with a projection operator). Then we obtain the following commutative diagram:

\[
\begin{array}{ccc}
q^{-1}(U) \subset V_n(\mathbb{R}^{n+k}) & \xrightarrow{h'} & V_k(\mathbb{R}^{n+k}) \\
\downarrow q \downarrow & & \downarrow q \\
U \subset G_n(\mathbb{R}^{n+k}) & \xrightarrow{\downarrow} & G_k(\mathbb{R}^{n+k}).
\end{array}
\]

Hence \(\downarrow : X \to X^\perp \) is a continuous function. Now we conclude that:

Lemma 1.1. The Grassmann Manifold \(G_n(\mathbb{R}^{n+k}) \) is a compact topological manifold of dimension \(nk \). The correspondence \(X \mapsto X^\perp \) which assigns to each \(n \)-vector subspace of \(\mathbb{R}^{n+k} \) its orthogonal complement defines a homeomorphism between \(G_n(\mathbb{R}^{n+k}) \) and \(G_k(\mathbb{R}^{n+k}) \).

1.1.4 Exercise

1. Let \(M \) be any vector subspace of \(\mathbb{R}^n \) and \(w \in \mathbb{R}^n \) be any point. Define

\[
d(w, M) = \inf_{m \in M} d(w, m).
\]

(a) Show that \(M \) is a closed subset of \(\mathbb{R}^n \).

(b) Show that there exists \(m_0 \in M \) so that \(d(w, M) = d(w, m_0) \).

(c) Show that \(w - m_0 \perp M \).

(d) Define \(f : \mathbb{R}^n \to \mathbb{R} \) by \(f(w) = d(w, M) \). Show that \(f \) is a continuous map.

2. Show that \(V_n(\mathbb{R}^{n+k}) \) is an open subset in \(\mathbb{R}^{n+k} \).

3. Suppose \(X_0 \) is a given point in \(G_n(\mathbb{R}^{n+k}) \) and \(U \) be the set of all points \(X \) of \(G_n(\mathbb{R}^{n+k}) \) so that \(X \cap X_0^\perp = \{ 0 \} \).

(a) Show that \(U \) is an open subset of \(G_n(\mathbb{R}^{n+k}) \).

(b) For each \(X \in U \), define \(P^X \) to be the restriction of the projection \(P : \mathbb{R}^{n+k} \to X_0 \) to \(X \). Given a basis \(\{ x_i : 1 \leq i \leq n \} \), there exists a basis \(\{ x_i^X : 1 \leq i \leq n \} \) of \(X \) so that \(p^X(x_i^X) = x_i \). Define a map \(F : U \to V_n(\mathbb{R}^{n+k}) \) by \(F(X) = (x_1^X, \ldots, x_n^X) \). Show that \(F \) is continuous.
4. For each ordered linearly independent set \(\{v_1, \cdots, v_n\} \) of \(\mathbb{R}^{n+k} \), we can obtained an ordered orthonormal set \(\{y_1, \cdots, y_n\} \) by using the Gram-Schmidt Process to \(\{v_1, \cdots, v_n\} \). Define \(G(v_1, \cdots, v_n) = (y_1, \cdots, y_n) \). Show that \(G : V_n(\mathbb{R}^{n+k}) \to V^0_n(\mathbb{R}^{n+k}) \) is a continuous map.

5. Suppose \(X \) is a topological space. Show that if for any \(x \neq y \) in \(X \), there exists a continuous function \(f : X \to \mathbb{R} \) so that \(f(x) \neq f(y) \), then \(X \) is a Hausdorff space.

6. Let \(X \) be a topological space and \(R \) is an equivalence relation on it. Denote \(X/R \) the set of all equivalent classes of \(X \) with respect to \(R \). Define \(\pi : X \to X/R \) by sending any point of \(x \) into its equivalent class.

 (a) On \(X/R \), we define \(O \in T \) if and only if \(\pi^{-1}(O) \) is open. Show that \(T \) is a topology on \(X/R \). Note that this topology is called the quotient topology.

 (b) Suppose \(f : X/R \to Y \) is a map. Show that \(f \) is continuous if and only if for any \(F : X \to Y \) so that \(F = \pi \circ f \), \(F \) is a continuous function.